26 research outputs found

    Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg-Sn alloys

    Get PDF
    The evolution of dendritic microstructures during the solidification of a Mg-15 wt%Sn alloy was investigated in situ via fast synchrotron X-ray microtomography. To enable these in situ observations a novel encapsulation method was developed and integrated into a fast, pink beam, imaging beamline at Diamond Light Source. The dendritic growth was quantified with time using: solid volume fraction, tip velocity, interface specific surface area, and surface curvature. The influence of cooling rate upon these quantities and primary phase nucleation was investigated. The primary dendrites grew with an 18-branch, 6-fold symmetry structure, accompanied by coarsening. The coarsening process was assessed by the specific surface area and was compared with the existing models. These results provide the first quantification of dendritic growth during the solidification of Mg alloys, confirming existing analytic models and providing experimental data to inform and validate more complex numeric models

    Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography

    Get PDF
    The microstructural patterns formed during liquid to solid phase transformations control the properties of a wide range of materials. We developed a novel methodology that allows in situ quantification of the microstructures formed during solidification of high temperature advanced alloys. The patterns formed are captured in 4D (3D plus time) using a methodology which exploits three separate advances: a bespoke high temperature environment cell; the development of high X-ray contrast alloys; and a novel environmental encapsulation system. This methodology is demonstrated on Ni, Fe, and Co advanced alloy systems, revealing dendritic pattern formation. We present detailed quantification of microstructural pattern evolution in a novel high attenuation contrast Co-Hf alloy, including microstructural patterning and dendrite tip velocity. The images are quantified to provide 4D experimental data of growth and coarsening mechanisms in Co alloys, which are used for a range of applications from energy to aerospace

    Effect of Fe-rich intermetallics on tensile behavior of Al-Cu 206 cast alloys at solid and near-solid states

    Get PDF
    Iron is one of the most common impurity elements in Al-Cu 206 cast alloys as it often causes the precipitation of Fe-rich intermetallic phases during solidification due to its extremely low solid solubility in aluminum. The characteristics of the Fe-rich intermetallics, such as type, morphology, size, and distribution, have significant influences on the tensile behaviors of the Al alloys. In the present work, two Al-Cu 206 cast alloys containing different types of Fe-rich intermetallics (dominated by either platelet β-Fe or Chinese script α-Fe) were cast and their tensile tests were performed at both solid (room temperature) and near-solid (2.8 vol. % liquid) states. It is found that the tensile properties in both solid and near-solid states are improved when the Fe-rich intermetallics change from platelet to Chinese script morphologies. During the solid state tensile deformation, the failure occurs mainly along the platelet β-Fe intermetallics/Al matrix interface or within the Chinese script α-Fe particles. In the near-solid state, the alloy containing mainly Chinese script α-Fe is found to have more free flow paths for liquid feeding, leading to improved tensile properties. By contrast, the platelet β-Fe can cause the blockage of the liquid flow paths, leading to the degraded tensile properties and worsened susceptibility to hot tearing

    Neutron Diffraction Measurement of As-Cast Residual Stresses in Aa7050 Rolling Plate Ingots: Influence of A Wiper

    Get PDF
    During casting, thermally induced deformations give birth to ingot distortions and residual stresses. For some high strength alloys, ingot cracking can happen during casting per se or during cooling down. Ingot distortions such as rolling face pull-in, but curl and but swell are rather easy to quantify as opposed to internal stresses. As aluminium is rather transparent to neutrons, residual stress measurements using neutron diffraction appeared to be a good way to validate the thermomechanical models aimed at simulating the stress build-up during casting. This technique has been applied to DC cast AA7050 rolling plate ingots with special attention to the stress generation in the transient start-up phase, i.e. in the foot of the ingot. Additional results using the hole drilling method complement the measurements. The measured stress distributions are compared with the results of a numerical model of DC casting for ingots cast with and without a wiper

    Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography

    Get PDF
    The scale of solidification microstructures directly impacts micro-segregation, grain size, and other factors which control strength. Using in situ high speed synchrotron X-ray tomography we have directly quantified the evolution of dendritic microstructure length scales during the coarsening of Mg-Zn hcp alloys in three spatial dimensions plus time (4D). The influence of two key parameters, solute composition and cooling rate, was investigated. Key responses, including specific surface area, dendrite mean and Gauss curvatures, were quantified as a function of time and compared to existing analytic models. The 3D observations suggest that the coarsening of these hcp dendrites is dominated by both the re-melting of small branches and the coalescence of the neighbouring branches. The results show that solute concentration has a great impact on the resulting microstructural morphologies, leading to both dendritic and seaweed-type grains. It was found that the specific solid/liquid surface and its evolution can be reasonably scaled to time with a relationship of ∼ t−1/3. This term is path independent for the Mg-25 wt%Zn; that is, the initial cooling rate during solidification does not greatly influence the coarsening rate. However, path independence was not observed for the Mg-38 wt%Zn samples because of the seaweed microstructure. This led to large differences in the specific surface area (Ss) and its evolution both between the two alloy compositions and within the Mg-38 wt%Zn for the different cooling rates. These findings allow for microstructure models to be informed and validated to improve predictions of solidification microstructural length scales and hence strength

    Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data

    Get PDF
    We present a novel iterative reconstruction method applied to in situ x-ray synchrotron tomographic data of dendrite formation during the solidification of magnesium alloy. Frequently, fast dynamic imaging projection data are undersampled, noisy, of poor contrast and can contain various acquisition artifacts. Direct reconstruction methods are not suitable and iterative reconstruction techniques must be adapted to the existing data features. Normally, an accurate modelling of the objective function can guarantee a better reconstruction. In this work, we design a special cost function where the data fidelity term is based on the Group-Huber functional to minimize ring artifacts and the regularization term is a higher-order variational penalty. We show that the total variation penalty is unsuitable for some cases and higher-order regularization functionals can ensure a better fit to the expected properties of the data. Additionally, we highlight the importance of 3D regularization over 2D for the problematic data. The proposed method shows a promising performance dealing with angular undersampled noisy dynamic data with ring artifacts

    Semi-solid Compression of Nano/Micro-Particle Reinforced Al-Cu Composites: An In Situ Synchrotron Tomographic Study

    Get PDF
    Four-dimensional fast synchrotron X-ray tomography has been used to investigate the semi-solid deformation of nano- and micro-particle reinforced aluminum-copper composites (Al-10 wt% Cu alloy with ~1.0 wt% Al2O3 nano and ~1.0 wt% Al2O3 micro particles). Quantitative image analysis of the semi-solid deformation behavior of three alloys (base, nano- and micro-particle reinforced) revealed the influence of the particulate size on both microstructural formation and dominant deformation mechanisms. The results showed that initial void closure and incubation period were present in the particle-free and nano-particle reinforced Al-Cu composite during semi-solid compression, while the micro-particle reinforced alloy only showed continual void growth and coalescence into cracks. The results suggest that the nano-particle reinforced composite has the best hot-tearing resistance amongst the three alloys. Improved hot-tear performance with nano-particulate reinforcement was attributed to the small liquid channel thickness, fine grain size which alters the distribution/morphology of the liquid channels, more viscous inter-dendritic liquid, and fewer initial voids.National Key Research and Development Program of China (No. 2017YFA0403803); National Natural Science Foundation of China (Nos. 51901034, 51525401, 51927801, 51974058); LiaoNing Revitalization Talents Program (No. XLYC1808005); ExoMet Project funded by the European Commission in the 7th Framework Programme (Contract FP7-NMP3-LA-2012– 280421); EPSRC-funded project UltraMelt2 (EP/R011001/1); EPSRC (EP/I02249X/1); Royal Academy of Engineering (CiET1819/10)

    In situ tomographic observation of dendritic growth in mg/al matrix composites

    No full text
    Understanding the interaction of nano/micro-particles with evolving microstructures during solidification is critical for developing new materials with improved mechanical properties through either particulate reinforcement and/or via microstructural refinement. In this study, we investigate the influence of nanoparticles on the evolving dendrites in both Mg and Al based metal matrix composites via in situ synchrotron tomography. Ultrasonic treatment was applied during the raw material preparation to break the particle agglomeration. The solidification of primary dendrites was characterized and quantified. The results reveal the underlying physical mechanisms that enable nanoparticles to modify the grain size in both alloy systems. These insights into dendrite evolution help both to inform and validate numerical models of the solidification microstructures of metal matrix composites
    corecore